Powerful sentiment analysis API powered by Eva AI Framework
https://az-buka.com/api/v1
Check API health status and view model metrics.
{
"status": "healthy",
"version": "1.0.0",
"model": "eva_sentiment.jls",
"framework": "Eva AI Framework",
"metrics": {
"accuracy": 0.8966,
"precision": 0.967,
"recall": 0.908,
"f1_score": 0.937,
"throughput": 5555
},
"timestamp": "2025-11-30T17:39:41Z"
}
Get detailed model statistics and capabilities.
{
"model": "eva_sentiment.jls",
"framework": "Eva AI Framework",
"metrics": { ... },
"capabilities": [
"Binary sentiment classification",
"Confidence scoring",
"Real-time analysis",
"Batch processing",
"Aspect-based analysis"
],
"limitations": {
"max_text_length": 5000,
"max_batch_size": 100,
"languages": ["English"]
}
}
Analyze sentiment of a single text.
{
"text": "This product is amazing! Highly recommend it."
}
{
"score": 0.9245,
"sentiment": "positive",
"text": "This product is amazing! Highly recommend it.",
"confidence": 0.8532,
"timestamp": "2025-11-30T17:39:41Z"
}
Analyze sentiment via query parameter.
GET /api/v1/sentiment?text=Great%20product
Analyze multiple texts in a single request (max 100).
{
"texts": [
"Great product!",
"Terrible quality, waste of money",
"Average, nothing special"
]
}
{
"count": 3,
"results": [
{
"score": 0.9245,
"sentiment": "positive",
"confidence": 0.8532,
...
},
{
"score": 0.1234,
"sentiment": "negative",
"confidence": 0.7821,
...
},
...
],
"timestamp": "2025-11-30T17:39:41Z"
}
Analyze sentiment for specific product aspects (quality, price, battery, design, performance, service, ease_of_use).
{
"text": "Great quality but the price is too high. Battery life is excellent."
}
{
"text": "Great quality but...",
"overall_sentiment": {
"score": 0.7234,
"sentiment": "positive",
"confidence": 0.6543
},
"aspects": {
"quality": {
"mentioned": true,
"sentiment": "positive",
"score": 0.7234,
"confidence": 0.6543
},
"price": {
"mentioned": true,
"sentiment": "positive",
"score": 0.7234,
"confidence": 0.6543
},
"battery": {
"mentioned": true,
"sentiment": "positive",
"score": 0.7234,
"confidence": 0.6543
}
},
"aspects_found": 3,
"timestamp": "2025-11-30T17:39:41Z"
}
Analyze sentiment trends over time.
{
"reviews": [
{
"text": "Great product!",
"timestamp": "2025-11-25T10:00:00Z"
},
{
"text": "Not satisfied",
"timestamp": "2025-11-26T14:30:00Z"
}
]
}
{
"total_reviews": 2,
"trends": [
{
"date": "2025-11-25",
"avg_sentiment": 0.8534,
"count": 1,
"positive_ratio": 1.0
},
{
"date": "2025-11-26",
"avg_sentiment": 0.2341,
"count": 1,
"positive_ratio": 0.0
}
],
"timestamp": "2025-11-30T17:39:41Z"
}
Analyze sentiment distribution across reviews.
{
"total_reviews": 100,
"distribution": {
"very_negative": 5,
"negative": 10,
"neutral": 15,
"positive": 40,
"very_positive": 30
},
"statistics": {
"average_score": 0.7234,
"positive_ratio": 0.70,
"negative_ratio": 0.30,
"median_score": 0.7456,
"std_deviation": 0.2134
},
"timestamp": "2025-11-30T17:39:41Z"
}
Get comprehensive analytics dashboard with all insights.
{
"summary": {
"total_reviews": 150,
"average_score": 0.7456,
"positive_ratio": 0.73,
"negative_ratio": 0.27
},
"distribution": {
"very_negative": 8,
"negative": 32,
"neutral": 20,
"positive": 60,
"very_positive": 30
},
"key_insights": {
"top_complaints": [
{"word": "expensive", "count": 15},
{"word": "slow", "count": 12}
],
"top_praises": [
{"word": "excellent", "count": 25},
{"word": "quality", "count": 20}
]
},
"top_aspects": [
["quality", 45],
["price", 38],
["performance", 22]
],
"trends": [...],
"timestamp": "2025-11-30T17:39:41Z"
}
import requests
# Single sentiment analysis
response = requests.post(
"https://az-buka.com/api/v1/sentiment",
json={"text": "This product is amazing!"}
)
result = response.json()
print(f"Sentiment: {result['sentiment']}")
print(f"Score: {result['score']}")
print(f"Confidence: {result['confidence']}")
# Batch analysis
response = requests.post(
"https://az-buka.com/api/v1/batch",
json={
"texts": [
"Great product!",
"Not satisfied",
"Average quality"
]
}
)
results = response.json()
print(f"Analyzed {results['count']} reviews")
// Single sentiment analysis
const response = await fetch('https://az-buka.com/api/v1/sentiment', {
method: 'POST',
headers: {'Content-Type': 'application/json'},
body: JSON.stringify({text: 'This product is amazing!'})
});
const result = await response.json();
console.log(`Sentiment: ${result.sentiment}`);
console.log(`Score: ${result.score}`);
// Aspect-based analysis
const aspectResponse = await fetch('https://az-buka.com/api/v1/analyze/aspects', {
method: 'POST',
headers: {'Content-Type': 'application/json'},
body: JSON.stringify({
text: 'Great quality but price is high'
})
});
const aspects = await aspectResponse.json();
console.log(`Found ${aspects.aspects_found} aspects`);
# Single sentiment
curl -X POST https://az-buka.com/api/v1/sentiment \
-H "Content-Type: application/json" \
-d '{"text": "This product is amazing!"}'
# Batch analysis
curl -X POST https://az-buka.com/api/v1/batch \
-H "Content-Type: application/json" \
-d '{"texts": ["Great!", "Not good", "Average"]}'
# Dashboard analytics
curl -X POST https://az-buka.com/api/v1/analyze/dashboard \
-H "Content-Type: application/json" \
-d '{"reviews": [{"text": "Great!", "timestamp": "2025-11-30T10:00:00Z"}]}'
| Status Code | Error | Description |
|---|---|---|
400 |
Bad Request | Missing required fields, invalid input, or text too long/short |
404 |
Not Found | Endpoint does not exist |
429 |
Too Many Requests | Rate limit exceeded (max 1 request per second) |
500 |
Internal Server Error | Server error during processing |
{
"error": "Text too long (max 5000 characters, got 7500)",
"timestamp": "2025-11-30T17:39:41Z"
}